Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Toxins (Basel) ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393168

RESUMO

Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Tricotecenos , Fumonisinas/metabolismo , Grão Comestível/microbiologia , Fusarium/genética , Fusarium/metabolismo , Ecossistema , Melhoramento Vegetal , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Micotoxinas/toxicidade , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia
2.
Plants (Basel) ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514322

RESUMO

The wheat NAC transcription factor TaNACL-D1 enhances resistance to the economically devastating Fusarium head blight (FHB) disease. The objective of this study was to decipher the alterations in gene expression, pathways and biological processes that led to enhanced resistance as a result of the constitutive expression of TaNACL-D1 in wheat. Transcriptomic analysis was used to determine the genes and processes enhanced in wheat due to TaNACL-D1 overexpression, both in the presence and absence of the causal agent of FHB, Fusarium graminearum (0- and 1-day post-treatment). The overexpression of TaNACL-D1 resulted in more pronounced transcriptional reprogramming as a response to fungal infection, leading to the enhanced expression of genes involved in detoxification, immune responses, secondary metabolism, hormone biosynthesis, and signalling. The regulation and response to JA and ABA were differentially regulated between the OE and the WT. Furthermore, the results suggest that the OE may more efficiently: (i) regulate the oxidative burst; (ii) modulate cell death; and (iii) induce both the phenylpropanoid pathway and lignin synthesis. Thus, this study provides insights into the mode of action and downstream target pathways for this novel NAC transcription factor, further validating its potential as a gene to enhance FHB resistance in wheat.

3.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36130261

RESUMO

Wheat NAC (TaNAC) transcription factors are important regulators of stress responses and developmental processes. This study proposes a new TaNAC nomenclature and identified defense-associated TaNACs based on the analysis of RNA-sequencing datasets of wheat tissue infected with major fungal pathogens. A total of 146 TaNACs were pathogen-responsive, of which 52 were orthologous with functionally characterized defense-associated NACs from barley, rice, and Arabidopsis, as deduced via phylogenetic analysis. Next, we focused on the phylogenetic relationship of the pathogen-responsive TaNACs and their expression profiles in healthy and diseased tissues. Three subfamilies ("a," "e," and "f") were significantly enriched in pathogen-responsive TaNACs, of which the majority were responsive to at least 2 pathogens (universal pathogen response). Uncharacterized TaNACs from subfamily "a" enriched with defense-associated NACs are promising candidates for functional characterization in pathogen defense. In general, pathogen-responsive TaNACs were expressed in at least 2 healthy organs. Lastly, we showed that the wheat NAM domain is significantly divergent in sequence in subfamilies "f," "g," and "h" based on HMMER and motif analysis. New protein motifs were identified in both the N- and C-terminal parts of TaNACs. Three of those identified in the C-terminal part were linked to pathogen responsiveness of the TaNACs and 2 were linked to expression in grain tissue. Future studies should benefit from this comprehensive in silico analysis of pathogen-responsive TaNACs as a basis for selecting the most promising candidates for functional validation and crop improvement.


Assuntos
Arabidopsis , Triticum , Triticum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/metabolismo
4.
Front Microbiol ; 13: 912632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935224

RESUMO

Fusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies. This study evaluated the effect of six lactic acid bacteria isolates on the development of FHB under in vitro and glasshouse conditions. The relative expression of Fusarium marker genes and transcription factors under Fusarium infection was examined. Dual-culture assays observed inhibition zones of up to 10 and 17% of total plate area for L. amylovorus FST 2.11 and L. brevis R2Δ, respectively. Detached leaf assays validated the antifungal activity and showed the potential of all test isolates to significantly inhibit sporulation of Fusarium culmorum and Fusarium graminearum strains. Spray inoculation of lactic acid bacteria to barley spikelets prior to Fusarium spore application significantly reduced disease severity for five candidates (P < 0.05) under glasshouse conditions. Mycotoxin analysis revealed the ability of L. amylovorus DSM20552 to significantly reduce deoxynivalenol content in spikelets (P < 0.05). A preliminary gene expression study showed the positive influence of lactic acid bacteria on the expression of important defense-related marker genes and transcription factors upon FHB. These results indicate the potential of lactic acid bacteria to be included as part of an integrated pest management strategy for the management of FHB disease. This strategy will reduce FHB severity and deoxynivalenol (DON) contamination of spring barley, leading to high acceptance in the grain market.

5.
BMC Plant Biol ; 22(1): 73, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183130

RESUMO

BACKGROUND: Chitosan has shown potential for the control of Fusarium head blight (FHB) disease caused by Fusarium graminearum. The objective of this study was to compare the effect of chitosan hydrochloride applied pre- or post-fungal inoculation on FHB and to better understand its' mode of action via an untargeted metabolomics study. RESULTS: Chitosan inhibited fungal growth in vitro and, when sprayed on the susceptible wheat cultivar Remus 24 hours pre-inoculation with F. graminearum, it significantly reduced the number of infected spikelets at 7, 14 and 21 days post-inoculation. Chitosan pre-treatment also increased the average grain weight per head, the number of grains per head and the 1000-grain weight compared to the controls sprayed with water. No significant impact of chitosan on grain yield was observed when the plants were sprayed 24 hours post-inoculation with F. graminearum, even if it did result in a reduced number of infected spikelets at every time point. An untargeted metabolomic study using UHPLC-QTOF-MS on wheat spikes revealed that spraying the spikes with both chitosan and F. graminearum activated known FHB resistance pathways (e.g. jasmonic acid). Additionally, more metabolites were up- or down-regulated when both chitosan and F. graminearum spores were sprayed on the spikes (117), as compared with chitosan (51) or F. graminearum on their own (32). This included a terpene, a terpenoid and a liminoid previously associated with FHB resistance. CONCLUSIONS: In this study we showed that chitosan hydrochloride inhibited the spore germination and hyphal development of F. graminearum in vitro, triggered wheat resistance against infection by F. graminearum when used as a pre-inoculant, and highlighted metabolites and pathways commonly and differentially affected by chitosan, the pathogen and both agents. This study provides insights into how chitosan might provide protection or stimulate wheat resistance to infection by F. graminearum. It also unveiled new putatively identified metabolites that had not been listed in previous FHB or chitosan-related metabolomic studies.


Assuntos
Quitosana/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Triticum/efeitos dos fármacos , Triticum/microbiologia , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Fungicidas Industriais/farmacologia , Fusarium/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Espectrometria de Massas , Metaboloma , Oxilipinas/metabolismo , Triticum/metabolismo
6.
PLoS One ; 16(10): e0258726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648604

RESUMO

Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Fusarium/metabolismo , Metiltransferases/genética , Proteínas de Transporte de Fosfato/genética , Tricotecenos/toxicidade , Triticum/efeitos dos fármacos , Triticum/microbiologia
7.
Sci Rep ; 11(1): 7446, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811222

RESUMO

There is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Fusarium/genética , Genes de Plantas , Família Multigênica , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Mineração de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
8.
BMC Plant Biol ; 20(1): 407, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883202

RESUMO

BACKGROUND: Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides, which contribute to cv. Stigg's exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts. RESULTS: The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes. CONCLUSIONS: We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg's defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg's wild wheat-derived ancestry. Overall, we present insights into cv. Stigg's exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Transcriptoma , Triticum/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
9.
Front Plant Sci ; 11: 433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477375

RESUMO

Understanding the nuances of host/pathogen interactions are paramount if we wish to effectively control cereal diseases. In the case of the wheat/Zymoseptoria tritici interaction that leads to Septoria tritici blotch (STB) disease, a 10,000-year-old conflict has led to considerable armaments being developed on both sides which are not reflected in conventional model systems. Taxonomically restricted genes (TRGs) have evolved in wheat to better allow it to cope with stress caused by fungal pathogens, and Z. tritici has evolved specialized effectors which allow it to manipulate its' host. A microarray focused on the latent phase response of a resistant wheat cultivar (cv. Stigg) and susceptible wheat cultivar (cv. Gallant) to Z. tritici infection was mined for TRGs within the Poaceae. From this analysis, we identified two TRGs that were significantly upregulated in response to Z. tritici infection, Septoria-responsive TRG6 and 7 (TaSRTRG6 and TaSRTRG7). Virus induced silencing of these genes resulted in an increased susceptibility to STB disease in cvs. Gallant and Stigg, and significantly so in the latter (2.5-fold increase in STB disease). In silico and localization studies categorized TaSRTRG6 as a secreted protein and TaSRTRG7 as an intracellular protein. Yeast two-hybrid analysis and biofluorescent complementation studies demonstrated that both TaSRTRG6 and TaSRTRG7 can interact with small proteins secreted by Z. tritici (potential effector candidates). Thus we conclude that TRGs are an important part of the wheat-Z. tritici co-evolution story and potential candidates for modulating STB resistance.

10.
Front Genet ; 11: 469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477410

RESUMO

During plant-pathogen interactions, pathogens secrete many rapidly evolving, small secreted proteins (SSPs) that can modify plant defense and permit pathogens to colonize plant tissue. The fungal pathogen Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), one of the most important foliar diseases of wheat, globally. Z. tritici is a strictly apoplastic pathogen that can secrete numerous proteins into the apoplast of wheat leaves to promote infection. We sought to determine if, during STB infection, wheat also secretes small proteins into the apoplast to mediate the recognition of pathogen proteins and/or induce defense responses. To explore this, we developed an SSP-discovery pipeline to identify small, secreted proteins from wheat genomic data. Using this pipeline, we identified 6,998 SSPs, representing 2.3% of all proteins encoded by the wheat genome. We then mined a microarray dataset, detailing a resistant and susceptible host response to STB, and identified 141 Z. tritici- responsive SSPs, representing 4.7% of all proteins encoded by Z. tritici - responsive genes. We demonstrate that a subset of these SSPs have a functional signal peptide and can interact with Z. tritici SSPs. Transiently silencing two of these wheat SSPs using virus-induced gene silencing (VIGS) shows an increase in susceptibility to STB, confirming their role in defense against Z. tritici.

11.
Plant Sci ; 288: 110217, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521211

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth. Little is known regarding the role of SnRK1α in the biotic stress response, especially in wheat. In this study, 15 wheat (Triticum aestivum) SnRK1α genes (TaSnRK1αs) belonging to four homoeologous groups were identified in the wheat genome. TaSnRK1αs are expressed ubiquitously in all organs and developmental stages apart from two members predominantly detected in grain. While DON treatment had either no effect or downregulated the transcription of TaSnRK1αs, it increased both the kinase activity associated with SnRK1α and the level of active (phosphorylated) SnRK1α. Down-regulation of two TaSnRK1αs homoeolog groups using virus induced gene silencing (VIGS) increased the DON-induced damage of wheat spikelets. Thus, we demonstrate that TaSnRK1αs contribute positively to wheat tolerance of DON and conclude that this gene family may provide useful tools for the improvement of crop biotic stress resistance.


Assuntos
Fusarium/fisiologia , Micotoxinas/farmacologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Tricotecenos/farmacologia , Triticum/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Triticum/microbiologia
12.
Sci Rep ; 9(1): 10344, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316079

RESUMO

The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Rhizobiaceae/genética , Agrobacterium tumefaciens/genética , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes Bacterianos , Engenharia Genética , Genoma de Planta , Interações entre Hospedeiro e Microrganismos/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Plasmídeos/genética , RNA-Seq , Transformação Genética
13.
G3 (Bethesda) ; 9(8): 2709-2722, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31227524

RESUMO

The serine protease inhibitor (serpin) gene family is the largest family of protease inhibitors. Serine protease inhibitors have an active, but under-characterized, role in grain development and defense against pathogen attack in cereal crops. By exploiting publicly available genomic, transcriptomic and proteomic data for wheat (Triticum aestivum), we have identified and annotated the entire 'serpinome' of wheat and constructed a high-quality and robust phylogenetic tree of the gene family, identifying paralogous and homeologous clades from the hexaploid wheat genome, including the Serpin-Z group that have been well characterized in barley. Using publicly available RNAseq data (http://www.wheat-expression.com/), expression profiles of the wheat serpins were explored across a variety of tissues from the developing grain, spikelet and spike. We show that the SERPIN-Z clade, among others, are highly expressed during grain development, and that there is homeologous and paralogous functional redundancy in this gene family. Further to their role in grain development, serpins play an important but under-explored role in response to fungal pathogens. Using 13 RNAseq datasets of wheat tissues infected by fungal pathogens, we identified 37 serpins with a significant disease response. The majority of the disease-responsive serpins were upregulated by Fusarium graminearum, a destructive fungal pathogen that attacks the spike and developing grain of wheat. As serpins are ubiquitous in wheat grain, the genes encoding serpins may be linked to grain development, with their disease response a result of pleiotropy.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Inibidores de Serina Proteinase/genética , Serpinas/genética , Triticum/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Interações Hospedeiro-Patógeno/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/classificação , Triticum/metabolismo
14.
Plant Biotechnol J ; 17(10): 1892-1904, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30821405

RESUMO

Taxonomically-restricted orphan genes play an important role in environmental adaptation, as recently demonstrated by the fact that the Pooideae-specific orphan TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhanced wheat resistance to the economically devastating Fusarium head blight (FHB) disease. Like most orphan genes, little is known about the cellular function of the encoded protein TaFROG, other than it interacts with the central stress regulator TaSnRK1α. Here, we functionally characterized a wheat (T. aestivum) NAC-like transcription factor TaNACL-D1 that interacts with TaFROG and investigated its' role in FHB using studies to assess motif analyses, yeast transactivation, protein-protein interaction, gene expression and the disease response of wheat lines overexpressing TaNACL-D1. TaNACL-D1 is a Poaceae-divergent NAC transcription factor that encodes a Triticeae-specific protein C-terminal region with transcriptional activity and a nuclear localisation signal. The TaNACL-D1/TaFROG interaction was detected in yeast and confirmed in planta, within the nucleus. Analysis of multi-protein interactions indicated that TaFROG could form simultaneously distinct protein complexes with TaNACL-D1 and TaSnRK1α in planta. TaNACL-D1 and TaFROG are co-expressed as an early response to both the causal fungal agent of FHB, Fusarium graminearum and its virulence factor deoxynivalenol (DON). Wheat lines overexpressing TaNACL-D1 were more resistant to FHB disease than wild type plants. Thus, we conclude that the orphan protein TaFROG interacts with TaNACL-D1, a NAC transcription factor that forms part of the disease response evolved within the Triticeae.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Genes de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas , Triticum/microbiologia
15.
Front Microbiol ; 10: 295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863378

RESUMO

Fusarium oxysporum is a leading microbial agent in the emerging consolidated bioprocessing (CBP) industry owing to its capability to infiltrate the plant's lignin barrier and degrade complex carbohydrates to value-added chemicals such as bioethanol in a single step. Membrane transport of nutrients is a key factor in successful microbial colonization of host tissue. This study assessed the impact of a peptide transporter on F. oxysporum's ability to convert lignocellulosic straw to ethanol. We characterized a novel F. oxysporum peptide transporter (FoPTR2) of the dipeptide/tripeptide transporter (PTR) class. FoPTR2 represents a novel transporter with high homology to the Trichoderma sp. peptide transporters ThPTR2 and TrEST-AO793. Its expression level was highly activated in nitrogen-poor environments, which is a characteristic of PTR class peptide transporters. Overexpression and post-translational gene silencing of the FoPTR2 in F. oxysporum affected the peptide transport capacity and ethanol yielded from a both a wheat straw/bran mix and glucose. Thus, we conclude that it FoPTR2 plays a role in the nutrient acquisition system of F. oxysporum which serves to not only enhance fungal fitness but also CBP efficacy.

16.
Methods Mol Biol ; 1900: 95-114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460561

RESUMO

With the recent advances in sequencing technologies, many studies are generating lists of candidate genes associated with specific traits. The major bottleneck in functional genomics is the validation of gene function. This is achieved by analyzing the effect of either gene silencing or overexpression on a specific phenotypic or biochemical trait. This usually requires the generation of stable transgenic plants and this can take considerable time. Therefore any technique that expedites the validation of gene function is of particular benefit in cereals, including barley. One such technique is Virus-Induced Gene Silencing (VIGS), which evokes a natural antiviral defense mechanism in plants. VIGS can be used to downregulate gene expression in a transient manner, but long enough to determine its effects on a specific phenotype. It is particularly useful for screening candidate genes and selecting those with potential for disease control. VIGS based on Barley Stripe Mosaic Virus (BSMV) is a powerful and efficient tool for the analysis of gene function in cereals. Here we present a BSMV VIGS protocol for simple and robust gene silencing in barley and describe it to evaluate the role of the hormone receptor BRI1 (Brassinosteroid Insensitive 1) in barley leaf resistance to Fusarium infection.


Assuntos
Resistência à Doença/genética , Inativação Gênica , Genes de Plantas , Hordeum/genética , Hordeum/virologia , Vírus de Plantas/fisiologia , Plântula/genética , Bioensaio , Fusarium/fisiologia , Vetores Genéticos/metabolismo , Genoma de Planta , Germinação , Hordeum/microbiologia , Oxirredutases/genética , Desenvolvimento Vegetal , Folhas de Planta/virologia , Plasmídeos/genética , RNA Viral/genética , Reprodutibilidade dos Testes , Sementes/genética , Esporos Fúngicos/fisiologia , Transcrição Gênica
17.
PLoS One ; 13(10): e0204992, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312356

RESUMO

The mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036. TaCYP72A was located on chromosome 3A with homeologs present on 3B and 3D of the wheat genome. Using gene expression studies, we showed that TaCYP72A variants were activated in wheat spikelets as an early response to F. graminearum, and this activation was in response to the mycotoxic Fusarium virulence factor deoxynivalenol (DON). Virus induced gene silencing (VIGS) studies in wheat heads revealed that this gene family contributes to DON resistance. VIGS resulted in more DON-induced discoloration of spikelets, as compared to mock VIGS treatment. In addition to positively affecting DON resistance, TaCYP72A also had a positive effect on grain number. VIGS of TaCYP72A genes reduced grain number by more than 59%. Thus, we provide evidence that TaCYP72A contributes to host resistance to DON and conclude that this gene family warrants further assessment as positive contributors to both biotic stress resistance and grain development in wheat.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Tricotecenos/farmacologia , Triticum/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Grão Comestível/fisiologia , Fusarium/isolamento & purificação , Fusarium/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mutagênese , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Vírus de Plantas/genética , Triticum/crescimento & desenvolvimento , Fatores de Virulência
18.
Front Plant Sci ; 9: 867, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997638

RESUMO

Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H (HvLRRK-6H) and wheat chromosome 6DL (TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its' mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.

19.
J Fungi (Basel) ; 4(1)2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439471

RESUMO

The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

20.
Bio Protoc ; 7(19): e2564, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595248

RESUMO

Ensifer adhaerens OV14, a soil borne alpha-proteobacteria of the Rhizobiaceae family, fortifies the novel plant transformation technology platform termed 'Ensifer-mediated transformation' (EMT). EMT can stably transform both monocot and dicot species, and the host range of EMT is continuously expanding across a diverse range of crop species. In this protocol, we adapted a previously published account that describes the use of Arabidopsis thaliana roots to investigate the interaction of A. thaliana and Agrobacterium tumefaciens. In our laboratory, we routinely use A. thaliana root explants to examine the factors that enhance the utility of EMT. In addition, the E-ART protocol can be used to study the transcriptional response of E. adhaerens and host plant following exposure to explant tissue, the transformability of different Ensifer adhaerens strains/mutants as well as testing the susceptibility of A. thaliana mutant lines as a means to decipher the mechanisms underpinning EMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA